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Ligand-induced conformational changes in proteins are of

immense functional relevance. It is a major challenge to

elucidate the network of amino acids that are responsible for

the percolation of ligand-induced conformational changes to

distal regions in the protein from a global perspective.

Functionally important subtle conformational changes (at

the level of side-chain noncovalent interactions) upon ligand

binding or as a result of environmental variations are also

elusive in conventional studies such as those using root-mean-

square deviations (r.m.s.d.s). In this article, the network

representation of protein structures and their analyses

provides an efficient tool to capture these variations (both

drastic and subtle) in atomistic detail in a global milieu. A

generalized graph theoretical metric, using network para-

meters such as cliques and/or communities, is used to

determine similarities or differences between structures in a

rigorous manner. The ligand-induced global rewiring in the

protein structures is also quantified in terms of network

parameters. Thus, a judicious use of graph theory in the

context of protein structures can provide meaningful insights

into global structural reorganizations upon perturbation and

can also be helpful for rigorous structural comparison. Data

sets for the present study include high-resolution crystal

structures of serine proteases from the S1A family and are

probed to quantify the ligand-induced subtle structural

variations.
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1. Introduction

A comparison of protein structures conventionally involves

the evaluation of root-mean-square deviations (r.m.s.d.s).

R.m.s.d.s primarily capture changes at the backbone level and

are mainly useful in identifying the commonality or differ-

ences at the fold or secondary-structure level. Small

synchronized variations at the level of side-chain interactions

as a result of ligand binding or environmental changes are of

immense functional relevance (Bhattacharyya & Vishvesh-

wara, 2010; Pargellis et al., 2002) and such variations can also

permeate to distal sites in the protein (Ghosh & Vishvesh-

wara, 2008). However, side-chain reorientations are rarely

addressed as a collective general feature owing to a lack of a

simple understanding of the same in molecular perspective at

a global level. Variations at the side-chain level are usually

visited for a specific set of residues that are either near the

active site or exhibit large backbone-level conformational

variations (Shi et al., 2006; Done et al., 1998; Latz et al., 2007).

Binding of ligands or changes in the environment are

usually associated with conformational changes in proteins,
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both drastic and subtle (Campanacci et al., 2003; Yang et al.,

2007). Often, the drastic changes at the backbone or

secondary-structure level are more easily identified compared

with the global subtle rewiring of the side chains. The dogma

of local perturbations induced by ligand binding usually pre-

dominates in structural studies, and the percolation of these

local changes to distal sites causing a global synchronization in

response to ligand binding is largely unexplored. However, the

global permeation of these subtle local changes is often of

functional relevance, as seen in the case of allosteric proteins

or where such changes are accompanied by ligand binding at

secondary sites (Nettles et al., 2004; Ghosh & Vishveshwara,

2007; Bhattacharyya et al., 2009).

In this study, a novel graph theoretical metric is proposed

based on protein side-chain interactions to capture the intri-

cate rearrangements at the side-chain level which are largely

elusive from backbone-level analyses. Here, protein-structure

networks (PSNs; Kannan & Vishveshwara, 1999) and network

parameters (such as cliques or communities; Palla et al., 2005)

are used to unravel the global reorientations in structures

upon ligand binding. Furthermore, it is found that a

comparative study of clique-forming residues for two struc-

tures is a better determinant of structural similarity (both at

the backbone and side-chain level) in contrast to the

conventional methods of analyses for structural deviations.

The permeation of the effect of ligand binding to distal sites

can also be efficiently monitored using the concept of cliques

or communities for the PSN in a global manner instead of

focusing only on the ligand-binding pocket. This global

percolation of ligand-induced stress in the structure may or

may not be of biological relevance depending on the system of

interest. However, the metric used is general and can be

applied to practically any well chosen data set of interest with

the aim of studying ligand-induced subtle global conforma-

tional changes.

The S1A family of serine proteases was chosen for our

analysis (Barrett & Rawlings, 1995). Serine proteases are

digestive enzymes but they also exert a functional role in

inflammation, blood clotting, the immune system and neural

plasticity (Pham, 2006; Yoshida & Shiosaka, 1999; Walsh &

Ahmad, 2002; Choo et al., 2010). Most of the members of the

chymotrypsin (S1) family are endopeptidases which differ

widely in specificity. The linear order of catalytic triad residues

in the polypeptide chains of the enzymatically active members

of family S1 is His, Asp and Ser. Serine proteases are inhibited

by a diverse group of compounds (serpins) including synthetic

inhibitors and natural peptides (Rubin, 1996; Whisstock et al.,

2010). The diversity in function offered by this family of

enzymes as well as the availability of a large number of high-

resolution crystal structures (both native and ligand-bound

structures) aptly suits the need of our present study. However,

the concepts developed and the methods used in this article

are highly generalized and can find potential use in structural

studies as well as in studying structure–function relationships

in any class of proteins of interest.

2. Methods

2.1. Creation of the data set

The data set is curated from the ‘Serine Protease Home’ at

http://www.biochem.wustl.edu/~protease/. This database con-

tains information from five clans, 30 families and around 700

serine protease sequences. The S1A family (Barrett & Rawl-

ings, 1995) was selected for our investigations. The protein

structures chosen for the present study are high-resolution

(<2.5 Å) crystal structures with the chain length of the native

protein being almost identical to that of the different ligand-

bound forms (this condition is imposed for efficient compar-

ison of network parameters). Using these criteria, 22 proteins

from the S1A family of serine proteases (a total of 72 struc-

tures) are chosen for the study (data set I; Table 1 and Table

S11) of the relationship of r.m.s.d.-common clique residues.

Furthermore, for the study of ligand-induced global confor-

mational variations, an additional constraint is imposed where

the native structure and at least one of the ligand-bound

structures are available at high resolution. A reduced data set

of eight native proteins (a total number of 27 structures are

chosen including the native and the liganded forms; data set

II) is obtained (highlighted in Table 1 and Table S11). Addi-

tionally, a data set of 109 high-resolution (<2 Å) crystal

structures of cationic trypsin (data set III; Table S21) is curated

to exhibit the long-range effect of ligand binding for a large

number of different ligand-bound structures from the same

protein.
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Table 1
Summary of data set I (72 structures from 22 different proteins).

The names of the proteins forming the reduced data set (data set II) are
highlighted in bold.

Protein name
(PDB code)

PDB codes of other
chosen structures

Apolipoprotein a 1i71, 1kiv, 3kiv, 4kiv
Complement factor B (1rrk) 1rtk, 1rrk
Complement C2 2i6q, 2odp, 2odq
Complement factor D (1dst) 1bio, 1dic, 1hfd, 1dst
Kallikrein-6 (1gvl) 1lo6, 1l2e, 1gvl
Prostatin (3e1x) 3dfj, 3dfl, 3e0n, 3e0p, 3fvf,

3e1x, 3gyl
Azurocidin 1a7s, 1ae5, 1fy1, 1fy3
Ancrod 2aip, 2aiq
Plasma kallikrein 2anw, 2any
Chymase (1nn6) 1klt, 1t31, 1pjp, 1nn6
Kallikrein-7 2qxh, 2qxj
Trypsin-1 (1utk) 1hj8, 1utj, 1utl, 1utm, 1utk
Urokinase-type plasminogen activator (2o8t) 2o8u, 2o8w, 2r2w, 1sqo, 2o8t
Trypsin (1os8) 1oss, 1sgt, 2fmj, 1os8
Coagulation factor XI 1zhm, 1zsj, 2fda
Chymotrypsin-like elastase family member 1 1b0e, 1l1g
Anionic trypsin-2 1and, 1j14
Cationic trypsin 1auj, 1az8, 1bju, 1c1p, 1btw
Cathepsin G 1cgh, 1t32
Human leucocyte elastase 1hne, 1ppg
Granzyme M 2zgc, 2zgh, 2zgj
Protein elastase 1ela, 1qr3

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: MV5039). Services for accessing this material are described at the
back of the journal.



2.2. Construction of a protein structure network

A protein structure network or protein structure graph

(PSN/PSG) efficiently portrays the noncovalent side-chain

interactions from a global perspective. The details of the

construction of such a graph at a particular interaction cutoff

(Imin) and the implications of such graphs have been discussed

in detail previously (Kannan & Vishveshwara, 1999; Brinda &

Vishveshwara, 2005). Protein structure networks are con-

structed by considering amino-acid residues as nodes, and

edges are constructed between the nodes on the basis of

noncovalent interactions between them (as evaluated from the

normalized number of contacts between them) for each

system. The noncovalent interaction between side-chain

atoms of amino-acid residues are considered (with the

exception of Gly where the C� atom is considered), ignoring

the interaction between sequence neighbours. The interaction

between two residues i and j has been quantified previously in

our laboratory as

Iij ¼
nij

ðNi � NjÞ
1=2
� 100; ð1Þ

where nij is number of distinct atom pairs between the side

chains of amino-acid residues i and j, which come within a

distance of 4.5 Å, and Ni and Nj are the normalization factors

for residues i and j. The pair of amino-acid residues having

interaction strength (Iij) greater than a user-defined cutoff

(Imin) are connected by edges to give a protein structure

network (PSN) for a given interaction strength Imin. Generally,

Imin values in the PSNs vary from 1 to 15%. The lower the Imin

value, the higher is the connectivity.

In order to choose an optimum Imin for analyses, the largest

cluster profile is constructed for structures in data set II as

described in detail in Brinda & Vishveshwara (2005) at

different Imin values (1–8%). Clusters are obtained using the

depth-first search algorithm. The optimal interaction strength

in a protein structure is exhibited at the Imin at which the size

of the largest noncovalently connected cluster (LClu) under-

goes a transition.

2.3. Network parameters associated with high connections

In network theory, cliques or communities (Palla et al., 2005,

2007; Adamcsek et al., 2006; schematically represented in

Figs. 1a and 1b) represent tightly connected regions of the

network. This concept has been used to study various

networks, both social (Palla et al., 2007) and biological (Kose et

al., 2001; Alexander et al., 2009). In the context of PSN, these

parameters are used to identify the rigid regions in the protein

structures and to recognize the ligand-induced conformational

changes (Bhattacharyya et al., 2009; Ghosh & Vishveshwara,

2008; Bhattacharyya & Vishveshwara, 2010). In this study, the

PSNs are constructed as described above. These PSNs are

analyzed in term of cliques or communities on the basis of the

following definitions.

(i) k-Clique. A k-clique is defined as a set of k nodes (points

represented by amino acids) in which each node is connected

to all the other nodes. Fig. 1(a) schematically shows a k = 3

clique in which all the three nodes are connected to each

other.

(ii) k-Clique community. A k-clique community is defined

as a union of smaller k-cliques that share node(s). According

to mathematical literature, a k-clique community has been

defined as the assemblage of k-cliques that can be percolated

through a series of adjacent k-cliques. In the present study,

a k-clique community is one in which two k-cliques share
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Figure 1
(a, b) A schematic description of the k = 3 clique and community formed
by two k = 3 cliques sharing k � 1 edges, respectively. (c) Unique cliques
in A and B with respect to each other. The k = 3 clique (nodes 1–2–5) are
common to both A and B, whereas the other k = 3 cliques are exclusive to
each of them. These unique cliques are highlighted as green triangles for
A and B. (d) Depiction of the unique edge or pair of residues in the
unique cliques of A and B [as shown in (c)]. The edges 3–4 and 4–5 are
unique to A, whereas edges 3–8, 4–8, 2–7, 3–7 and 7–8 are unique to B (as
highlighted with red lines). (e) Unique residues of unique cliques in A and
B (node 7 and 8 for B, none for A) highlighted as purple spheres.



k � 1 nodes. Fig. 1(b) schematically shows a k = 3 community

where two k = 3 cliques share an edge (i.e. 3 � 1 = 2

nodes).

(iii) k-Clique or k-clique community finding algorithm. The

clique or community search is based on the algorithm

proposed by Palla et al. (2005). Cfinder is used to obtain the

cliques or communities from PSNs. In the majority of cases

k = 3 cliques are obtained at the chosen Imin = 3%. k-Clique

communities with an overlap of k � 1 nodes are obtained

using Cfinder (Adamcsek et al., 2006).

The Imin values for analyses are also optimized based on the

largest community profile for the structures in data set II as a

function of different Imin values in the range 1–8%. The region

of transition in the largest community size is considered to be

of interest.

(iv) Unique cliques (UC). Unique cliques are defined as

those exclusively present in a particular structure with respect

to another structure. In this study, the cliques present only in

the ligand-bound states with respect to the corresponding

native structures are termed unique. Such unique cliques

represent tightly packed rigid regions in the liganded struc-

tures. Fig. 1(c) schematically highlights the unique cliques in

models A and B with respect to each other. This is a

comparison at the three-node (clique) level.

(v) Unique edges of unique cliques (UEUC). A comparison

of the edges constituting the unique cliques in the liganded

structures with respect to the ones in the native state gives the

unique edges of unique cliques (UEUC) for the liganded

structures. Such UEUCs reflect increased pairwise connec-

tions (in liganded structures with respect to the native)

between the residues in the liganded states. Fig. 1(d) sche-

matically highlights the UEUC in A and B with respect to each

other. This is a more rigorous comparison at the two-node

(edge) level.

(vi) Unique residues of unique cliques (URUC). A

comparison of the residues constituting the unique cliques in

the liganded structures with respect to those in the native state

results in the unique residues of unique cliques (URUC).

URUC represents the participation of new residues in UC for

the liganded state with respect to the cliques in the native

structure. Fig. 1(e) schematically highlights the URUC in B

with respect to A (there are no URUC in A with respect to B).

This is the most rigorous structural comparison at the single-

node (residue) level. The rewiring of the network subsequent

to ligand binding is responsible for such rearrangements in

connectivity at the clique/edge/residue level.

2.4. Dividing the protein structure into three ‘tiers’

The average distance of the boundaries of protein struc-

tures from the active-site triad (Ser, His, Asp) are calculated

using VMD (Humphrey et al., 1996). For all the structures in

data set II this average distance (d) is found to be approxi-

mately 24 Å. The protein structures in data set II are theor-

etically divided into three tiers, near (<d/3), mid (d/3–2d/3)

and far (>2d/3), based on their proximity from the active-site

triad. The native and ligand-bound structures are compared

through cliques. The uniqueness is identified through (i) an

entire clique motif (UC), (ii) unique edges of unique cliques

(UEUC) and (iii) unique residues of unique cliques (URUC)

(a detailed explanation of these parameters is given in the

preceding section). The differences in the number of these

three parameters between the native and the ligand-bound

structures are identified in each tier in order to capture the

long-range effects of ligand binding. A normalization of these

numbers based on the volume of each tier (Table S4) is

performed in order to eliminate the bias arising from small

differences in volume, especially for the ‘far’ tier.
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Figure 2
(a) Plot of size of largest cluster versus Imin (1–8%) showing a transition between 2.5 and 5%. (b) Plot of size of largest community versus Imin (1–8%)
showing a transition between 2 and 4%.



2.5. Comparison of URUC with results from standard
network parameters

The standard network parameters used for comparison are

residue-wise connectivity (i.e. the number of connections

made by a residue) and the residue-wise clustering coefficient.

The residue-wise changes in the number of connections

(�conn) and the clustering coefficient (�ccfs) in going from

native structures to the liganded states are evaluated for all

the structures in data sets II, data set III and the elastase data

set using

�conni ¼ conni
lig � conni

nat ð2aÞ

�ccfsi
¼ ccfsi

lig � ccfsi
nat; ð2bÞ

where conni
lig and conni

nat are the number of connections and

ccfsi
lig and ccfsi

nat the clustering coefficient of residue i in the

liganded and the corresponding native state, respectively

(i = 1, . . . , N, where N is the total number of residues).

Again, the clustering coefficient of a vertex (or node) is a

measure of cliquishness (Watts & Strogatz, 1998; i.e. it quan-

tifies the tendency of its neighbours to be a clique) of that

node and is defined as ccfsvertex = no. of edges between the

vertex’s neighbours/total possible no. of edges between the

vertex’s neighbours (Watts & Strogatz, 1998).

3. Results and discussion

Functionally diverse proteins are included (Table S1) from the

S1A family in our data set with widely different sequence

lengths for each protein class. The PSNs are constructed for

each structure and used for further analysis as detailed in the

subsequent paragraphs.

3.1. General network properties and the choice of Imin

Imin is a measure of the extent of connectivity in the PSNs. A

lower Imin is associated with higher connectivity and vice versa.

Previous studies from our group have shown that the optimal

interaction strength in a protein structure is exhibited at an

Imin at which the size of the largest noncovalently connected

cluster (LClu) undergoes a transition (Brinda & Vishvesh-

wara, 2005). Here, the largest cluster profile is obtained for all

the structures in data set II as a function of Imin (Fig. 2a) and a

profile similar to that of the proteins from earlier studies is

obtained with a transition in the size of the LClu between Imin

of about 2.5 and 5%. Additionally, a largest community

(LComm) profile (see x2) for structures in data set II is

obtained at different Imin values (Fig. 2b). The size of the

LComm also shows a transition in the Imin range of about 2–

4%. At lower Imin values (pretransition region) the network

is densely connected, whereas at higher Imin values (post-

transition region) the network connectivity is very sparse.

These values of Imin are the extremes of the range. The tran-

sition regions in LClu and LComm profiles reflect the most

meaningful connections and thus all our further investigations

are mainly focused on the Imin range 2–5%, emphasizing the

results at Imin = 3%. However, a case study on elastase shows

that consistent results are obtained for different Imin values

corresponding to the transition region.

3.2. Low r.m.s.d.: do not ignore!

A global view of the synchronization at the level of side-

chain interactions for different protein structures can be

achieved through the network approach, which has high-

lighted certain common features that are general to all

proteins. One such common feature investigated by us earlier

is the existence of densely connected clusters (cliques or

communities) of interacting side chains, which percolate

through a large part of the protein structure network (Deb et

al., 2009). This analysis has opened up the possibility of a

rigorous comparison of protein structures which shows subtle

deviations through side-chain reorientations.
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Figure 3
Percentage of common cliques versus backbone r.m.s.d. between all the structures of the selected proteins in data set I (22 proteins and 72 high-
resolution crystal structures) at (a) Imin = 1% and (b) Imin = 3%.



For our complete data set (data set I) of 72 high-resolution

serine protease structures from the S1A family, it is seen that

all-atom, backbone and C� r.m.s.d. values between all the

structures of a protein (the range of r.m.s. deviation is between

0.1 and 0.6 Å, with the r.m.s.d. values at the all-atom, back-

bone and C� levels having a high correlation value of 0.98–0.99

amongst themselves) could indeed be correlated with differ-

ences in the side-chain network connections (at Imin = 1% and

Imin = 3%) in terms of common cliques to various extents

(Fig. 3, Table S3). It is evident from Fig. 3 that backbone

r.m.s.d.s between two structures are reflected in the percen-

tage of common cliques between these structures in an inverse
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Table 2
Comparison of URUC (in the liganded structures of data set II with respect to their corresponding native structures) with results from �ccfs and �conn.

All the URUCs either overlap with the residues showing an increase in clustering coefficient or connectivity (in italic type) or both (in bold type). The % overlap
with �ccfs and �conn is also reported.

Protein Ligand-bound
structure(s)

Unique resolution of unique cliques
(URUC) with respect to native†

Identity of URUC with
respect to �ccfs (%)

Identity of URUC with
respect to �conn (%)

Complement factor D native
(1dst)

1bio 2L 14Y 29V 35W 39A 74R 92L 94Q 108L 117V 121T 135G
137R 148V 154C 160H 164I 170C 186P 188V 191G 193L
199S 202R 212I 216V 227L

93 85

1dic 8E 10H 12R 29V 35W 39A 58H 64E 74R 94Q 120G 122L
143H 147P 154C 160H 164I 170C 199S 202R 212I

86 81

Trypsin native (1os8) 1oss 33L 41G 43G 69K 70V 87K 117A 122G 157A 169Q 176M 190I
206Y 223L

86 71

Trypsin-1 native (1utk) 1hj8 1I 4G 7C 12Q 19N 40H 47E 49R 73H 85I 114T 116C 118V
135Q 136C 137L 141I 154M 211F

84 100

1utj 14H 19N 31N 34W 40H 42Y 47E 49R 52E 62E 64F 70V 73H
85I 86M 88I 103V 154M 181V 184G 186L 188G 208V 211F
219M

88 96

1utl 14H 19N 39A 42H 47E 49R 52E 62E 64F 70V 72R 73H 75N
83N 85I 86M 103V 154M 181V 184G 211F

90 67

1utm 73H 85I 211 F 100 33
Prostatin native (3e1x) 3dfl 18I 28G 43F 52Y 86G 154R 158N 161Y 171H 172F 174Q

177M 214W 215G
86 50

3e0p 1I 4G 38G 43F 56L 57G 60Q 65S 68A 69K 100I 106I 118F
126V 138L 141P 143P 145Q 147L 202V 207Y 213S 228T
233Y

83 71

3fvf 1I 4G 60Q 93L 118F 126V 138L 141P 143P 145Q 147L 154R
158N 172F 202V 207Y 237I

88 65

Complement factor B native
(1rrk)

1rtk 3N 33V 38V 41R 57V 88T 109H 114M 119H 123G 125P 136L
156G 157V 161V 181K 182V 196I 220Q 223Q 230R 254T
257D 289K 292A 294I 357F 358V 359S 361E 368K 384D
387Y 399E 418N 420C 423D 427P 436F 438Q 447V 449V
452R 456V 457P 459 H 460 A

74 64

Chymase native (1nn6) 1KLT 1I 2I 3G 4G 6E 14Y 15M 17Y 29F 32G 46C 54T 58H 59N 60I
61T 88H 108L 111P 121R 123C 126V 128W 130R 132G
139D 140T 141L 142Q 144V 148L 149M 164L 169G 171P
175K 181D 183G 185P 187L 188C 191V 193Q 200R 202D
204K 215Y

81 64

1pjp 1I 2I 3G 4G 6E 14Y 15M 29F 47A 54T 58H 59N 61T 69K 71E
73I 77R 96K 108L 113Q 117V 120G 122M 123C 128W 130R
132G 139D 140T 141L 142Q 144V 147R 165Q 175K 181D
186L 187L 188C 193Q 194G 198Y 200R 202D 204K 208V
209F 213S

85 71

1t31 1I 2I 3G 4G 6E 14Y 15M 20I 28K 29F 30C 32G 33F 35I 54T
58H 59N 61T 69K 85T 87H 88H 90I 108L 110F 121R 123C
128W 130R 132G 138S 139D 140T 141L 142Q 144V 149M
159D 161D 164L 169G 171P 175K 181D 185P 186L 187L
188C 195I 200R 202D 203A 204K 215Y 216R 220N

84 66

Kallikrein-6 native (1gvl) 1l2e 2V 35W 37L 52G 54H 63Q 70R 88L 90R 124K 125T 130F
131P 164D 167Y 170D 171S 172C 173Q 190V 198G 199S
206Y 216I

100 88

Urokinase-type plasminogen
activator native (2o8t)

2o8u 14W 18I 58R 64N 68E 94L 113I 136E 144P 148K 160C 165Y
170V 176C 182W 186S 196V 219D 224Y

58 58

2o8w 15F 18I 40W 45T 49I 57Y 62G 63R 69N 70T 73E 87Y 98I 100L
101L 120I 128D 129P 133T 138T 143E 151P 155K 156M
161L 167C 172Y 173Y 176E 177V 181M 182L 183C 203V
218W 226D 230V 232T 233R 237F 245T

73 73

2r2w 7T 45T 49I 62G 70T 73E 87Y 128D 156M 172Y 189W 226D
233R 235S

79 71

1sqo 45T 49I 63R 69N 73E 87Y 128D 141G 143E 151P 155K 156M
193S 196G 226D 233R 235S

82 59

† The residue numbers are based on cleaned PDB files with the residues being renumbered from 1.



manner for our complete data set I with a high anticorrelation

value of�0.75 (at Imin = 1%) and�0.66 (at Imin = 3%) (similar

values of anticorrelation are seen for the r.m.s.d.s at the C�

and all-atom levels; results not shown). A general trend that

lower r.m.s.d. difference is accompanied by a higher percen-

tage of common cliques is prominent from the data, implying

that even a small r.m.s.d. value can give us a clue to the

rewiring of side-chain interactions in a protein as a function of

environment. This general methodology can be used in

tracking the ligand-induced subtle conformational variations

in proteins at the level of side-chain interactions in molecular

detail from a global perspective. Such an analysis of comparing

changes through r.m.s.d. and combining it with the network

approach (i.e. the percentage of common cliques) has a

potential application as a powerful tool in identifying subtle

structural differences with high relevance to function in

homologous proteins.

3.3. Ligand/environment-induced conformational variations
at proximal/distal sites

In this article, the global effects of ligand binding towards

side-chain interactions is efficiently captured using the

concepts of graph theory, thereby throwing light on the

readjustments in the protein structure network both proximal

to and distal from the site of ligand binding. One such inter-

esting graph parameter is cliques, which portray the trans-

mission of perturbation to distal sites in an efficient manner. In

order to quantify the changes at different distances from the

site of ligand binding, the structure of every protein in our

reduced data set II is divided into three regions (near, within

d/3; mid, between d/3 and 2d/3;

far: beyond 2d/3; where d is the

average distance of the catalytic

triad from the farthest points in

any direction of all the proteins in

the data set, approximately equal

to 24 Å; described in detail in x2).

The number of residues partici-

pating in unique cliques (UC),

unique edges of unique cliques

(UEUC) and unique residues of

unique cliques (URUC) (detailed

in Figs. 1c–1e and x2) in each of

these three regions for all the

structure in data set II are

computed and the results are

summarized in Fig. 4 and Tables

S5–S7 (at Imin = 3%). It is evident

from Fig. 4 that the conforma-

tional variations (as determined

by the above-mentioned para-

meters) are at a maximum in the

‘near’ region, proximal to the site

of ligand binding, as expected.

However, the ‘mid’ and ‘far’

regions also bear evidence of

perturbation (in terms of these three parameters), validating

the argument that ligand-induced conformational changes are

not only restricted to the site of binding but can also permeate

to longer distances by the rewiring of the structure network at

the level of side-chain interactions.

To further substantiate our observations with eight different

proteins (i.e. 27 structures in data set II) as described above,

similar calculations are performed on another data set (data

set III) comprising 109 cationic trypsin structures [108

liganded structures and one native structure (1s0q)]. Similar

results are obtained with the three parameters being distrib-

uted in the ‘mid’ and ‘far’ tiers, in addition to the ‘near’ tier

(Fig. S1). Thus, it is evident that a larger data set containing

structures from a single protein (cationic trypsin) in different

ligand-bound states also yields similar outcomes in terms of

global permeation of local perturbation upon ligand binding.

The computation of the matrices and the cliques can now

be evaluated through our webserver GraProStr available

at http://vishgraph.mbu.iisc.ernet.in/GraProStr/index.html

(Vijayabaskar et al., 2011).

3.4. Comparison of results with standard network parameters

In order to link the results based on cliques in the preceding

section with standard network parameters, the overlap

between the unique residues of unique cliques (URUC) and

the residues showing an increase in connectivity (�conn > 0)

or clustering coefficient (�ccfs > 0) (see x2) in a ligand-bound

structure (with respect to the native structure) is computed.

Interestingly, the URUC obtained for the liganded structures

in data sets II and III also show an increase in connectivity or
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Figure 4
Long-range effect of ligand-induced conformational changes in 27 structures from eight different proteins
of the S1A family of serine proteases. The effect is captured in terms of UC, UEUC and URUC in the three
tiers around the ligand-binding site: ‘near’, ‘mid’ and ‘far’ with respect to a native structure.



clustering coefficient or both with respect to the corre-

sponding native structures (Table 2, Fig. 5). The overlap is

comparatively better with the residues showing �ccfs > 0. All

the URUC for most of the structures in data sets II and III are

a subset of a combined list of residues exhibiting either �conn

> 0 or �ccfs > 0 with respect to the corresponding native

structures [Table 2, Fig. S2; the number of residues in the

combined list is almost double the number of URUCs (details

for elastase summarized in Table S8)]. The increase in both

connectivity and clustering coefficient indicate that the residue

has acquired more connections. However, a clique provides

higher order connectivity information (Deb et al., 2009)

capturing the connectivity as a global property elucidated at a

detailed node level and further screening the residues iden-

tified to be important from the parameters such as connec-

tivity and clustering coefficient. These data clearly portray the

validity and robustness of the results derived from comparison

of cliques, demonstrating that cliques are a sensitive para-

meter for structure comparison, in contrast to standard

network parameters such as connectivity or clustering coeffi-

cient alone.

3.5. Conformational reorientation upon analogous ligand
binding: a case study with elastase

The ligand-induced subtle global conformational variations

are considered to be of functional relevance and such changes

are often elusive from conventional structural studies. It has

been shown previously that a judicious use of graph theor-

etical parameters can be of immense use in unravelling such

subtle changes (Bhattacharyya & Vishveshwara, 2009). Here

this point is elaborated for different ligand-bound structures

of serine proteases in general, with a case study on elastase.

High-resolution crystal structures (1.7–2.1 Å) of elastase

bound to three analogous inhibitors with different binding

modes are available (Mattos et al., 1994). These three struc-

tures of elastase (1ela, 1elb and 1elc) exhibit different

preferences of ligand-binding subsites (Mattos et al., 1995). On

superposing these three crystal structures on the corre-

sponding high-resolution native structure of elastase (1esa,

1.6 Å), significant backbone conformational changes are not

observed (backbone and all-atom r.m.s.d. less than 0.22 Å).

However, a detailed comparison at the level of side-chain

interactions yields significant changes between the four

different systems under study. The superposition of the resi-

dues comprising the catalytic triad and those in the substrate-

binding pockets clearly show variations at the level of side-

chain organization upon non-analogous binding of analogous

ligands (Fig. 6) and such ‘plasticity’ has been referred to as the

‘subtle induced fit of the active site as a result of ligand

binding’ (Mattos et al., 2006). This local perturbation is

percolated to distal sites mediated through the connectivity

network at the side-chain level, as captured by the URUC.

Elastase and its inhibitor-bound forms have been extensively

investigated. Multiple-solvent crystal structures of elastase

used to probe the various ligand-binding sites on elastase have

mainly identified the active site as the potential pocket

(Mattos et al., 2006; Mattos & Ringe, 1996). Although a large

number of biochemical and structural studies have been

performed focusing on the active sites of elastase (Mattos et

al., 1994, 1995, 2006), few studies have probed the effect of

distal residues on the catalysis and specificity of the enzyme

(Hung & Hedstrom, 1998). It has been proposed by Hedstrom

that the catalysis and specificity in serine proteases in general

are not controlled by a small set of residues, but are deter-

mined by the properties of the ‘entire protein network’

(Hedstrom, 2002). In this study, such a global perspective is

provided by the protein structure network and the percolation
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Figure 6
Pictorial depiction of the superposition of the active site (60H, 108D,
203S) and ligand-binding residues (63D, 100T, 200Q, 201G, 202D, 224V
and 226R) for 1ela, 1elb and 1elc. Subtle variations are clearly exhibited
at the level of side-chain orientations. The ligands for 1ela, 1elb and 1elc
are depicted as blue, red and green lines and the corresponding residues
are represented by CPK using the same colour code.

Figure 5
Plot of percentage overlap of URUC with residues showing increase in
connectivity (conn) or clustering coefficient (ccfs) (with respect to the
native structure 1s0q) for all the 108 liganded structures of cationic
trypsin (data set III). The overlap is comparatively better with the
residues showing �ccfs > 0.



of any local stress to distant sites is captured by comparison of

the network parameters (cliques in this case).

Pretransition Imin values (e.g. 1%) again produce dense

networks connecting most of the nodes in both the native and

the ligand-bound structures. This leads to the identification of

very few URUCs. However, a very stringent connectivity

criterion (Imin > 5%) gives rise to a sparse network in both the

native and the ligand-bound structures, thus leading to small

numbers of URUC. Meaningful comparison studies can be

performed at the transition region between the densely and

sparsely connected networks (as explained above). A profile

of the number of unique cliques for 1ela, 1elb and 1elc with

respect to 1esa (native) as a function of Imin clearly exhibits a

peak at �2–3% (Figure S3a). Additionally, a comparison of

URUC between each of the three ligand-bound systems of

elastase with respect to 1esa (native) at different Imin values

reveals a significant overlap between such residues in the Imin

range of �2–4% (Figs. S3b and S4). Therefore, an Imin of 3%

was chosen for all further analyses on elastase.

The URUCs in the inhibitor-bound systems (with respect to

the native elastase) clearly reveal that the effect of differential

binding of the three analogous inhibitors at the active site is

permeated in a magnified manner throughout the network

(Fig. 7). An extensive comparison among the URUCs for 1ela,

1elb and 1elc clearly portrays the differences in the global

structural organizations for the three systems (Table S9). The

reason for such differences in reorientations at the level of

side-chain interactions is the differential perturbation at the

ligand-binding sites by these three inhibitors. Interestingly,

many such unique residues are identified at regions not

immediately proximal to the ligand-binding pocket (i.e. in the

‘mid’ and ‘far’ tiers) (Table S10). The other proteins and their

different ligand-bound forms considered in data set II also

show a similar trend (Fig. S5). Such an insight could not be

obtained by mere inspection of the crystal structures. The

URUCs obtained for the three ligand-bound structures of

elastase are compared with standard network parameters such

as �conn or �ccfs (see x2). All URUCs exhibit an increase in

connectivity or clustering coefficient or both for the three

liganded structures of elastase (Table 3). Also, an extensive

SCA analysis of the S1A family of serine proteases yielded

groups of statistically coupled residues which are proposed to

have a possible role in specificity and catalysis (Suel et al.,

2003). Strikingly, a majority of the residues in these groups

coincide with the URUCs identified for the three systems 1ela,

1elb and 1elc (Table S11).
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Figure 7
Effect of differential binding of three analogous inhibitors on global side-chain rewiring in elastase. The URUC with respect to the native elastase
structure (1esa) for the three systems are topologically different. A slight change in the binding of the ligand shows distinct variations in conformational
reorientation in the three systems at the side-chain level (Table S9). The protein backbone is represented as a light grey cartoon and the unique clique
residues are depicted as van der Waals spheres. The ligands are represented as deep blue sticks.

Table 3
Comparison of URUC [in three liganded structures of elastase with respect to 1esa (native)] with results from �ccfs and �conn.

All the URUC either overlap with the residues showing an increase in clustering coefficient or connectivity (in italic type) or both (in bold type). The percentage
overlap with �ccfs and �conn is also reported.

Protein Ligand-bound
structure(s)

Unique residues of unique cliques
(URUC) with respect to native

Identity of unique residues
of unique cliques with respect
to �ccfs (%)

Identity of unique residues
of unique cliques with respect
to �conn (%)

Elastase native
(1esa)

1ela 34Q 35Y 41W 54W 58A 59A 60H 63D 64R 66L 69R 72V 85Q
89V 91K 92I 94V 100T 112L 113R 124V 136L 140S 167T
225S 228G 231V 234K 255N

90 62

1elb 27W 35Y 41W 48T 50I 56M 59A 60H 64R 66L 89V 92I 94V
112L 124V 143Y 162Q 198G 208H 215Y 224V 229C

77 68

1elc 21E 27W 34Q 41W 58A 60H 69R 72V 75H 85Q 89V 92I 93V
112L 124V 143Y 159T 162Q 251V 255N

80 45



4. Conclusions

Protein structure comparisons are generally performed at the

level of backbone topology. Identification of a consolidated

global noncovalent connectivity of the side chains has been a

challenge to structural biologists. In this paper, a robust

method is provided to identify subtle conformational changes

owing to perturbations such as ligand binding or point muta-

tions based on the concepts of graph theory.

Data sets of high-resolution crystal structures belonging to

the serine protease S1A family are considered. It is demon-

strated that small r.m.s.d. values between all the structures

from the same protein show a correlation with differences in

network parameters such as cliques (highly connected sets of

residues). Structural differences between liganded and the

corresponding native structures based on cliques are also

obtained and our results show significant agreement with

standard network parameters such as clustering coefficients

and the number of connections evaluated at the residue level

from protein structure networks.

This study has provided a reliable method for comparison of

structural features at the detailed side-chain level, with very

similar backbone topology. The outlined method may prove to

be a powerful tool in investigating subtle changes in biologi-

cally important phenomena such as allostery, where ligand

binding has a long-range effect that is sensed at a distal region.

Furthermore, such an approach can also be employed in

structural comparison in a functionally relevant fluctuating

environment obtained from MD simulations or NMR studies

to track the subtle global changes in a statistically relevant

manner to provide structural biological insights.
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